Maeckes logo

<    1    >


Derivative of the inverse cotangent

The first derivative of the inverse cotangent is

 


Explanation

We'll start with the cotangent, for which applies

     and the inverse     

Differentiation gives

To this we apply the chain rule

Turning over delivers

We want to trace this back to a function that only contains cot y, because we can then replace that with x. For the sake of clarity we write

With the fundamental formula of trigonometry we get

Division of the numerator and denominator by sin2y shows

Substitution of y = arccot x and cot y = x gives

 


Deutsch   Español   Français   Nederlands