Maeckes logo

<    1      2    >


Domain of a logarithm

The domain of a logarithm can be expanded into negative and complex numbers.

 


Explanation

The logarithm of a complex number z in the interval [0, 2π) is called the principle value. The interval (−π, π] can also be taken. The logarithm is a multi-valued function

ln z = ln r + i (φ + 2)

Negative numbers are a special case of complex numbers.

 


Example 1

We start with Euler's identity and find

e + 1 = 0      ⇒      −1 = e

and take the logarithm

ln (−1) = ln (e)

so that

ln (−1) = 

 


Deutsch   Español   Français   Nederlands   中文   Русский