Maeckes logo

<    1    >


Eulerian numbers

The Eulerian numbers give the amount of permutations of the integers 1 to n in which exactly m elements are greater than the previous element.

 


Explanation

Eulerian numbers are described as

A(n, m)

where

    n total number of elements
    m number of elements that are greater than the previous element

The values can be calculated by hand as

A(1, 0) = 1 1
A(2, 0) = 1 2 1
A(2, 1) = 1 2
A(3, 0) = 1 3 2 1
A(3, 1) = 4 2     2 1 3     2 3 1     3 1 
A(3, 2) = 1 2 3

The Euler triangle shows the values for n = 1 to 9 and m = 0 to 8.

0 1 2 3 4 5 6 7 8
1 1                  
2 1 1                
3 1 4 1              
4 1 11 11 1            
5 1 26 66 26 1          
6 1 57 302 302 57 1        
7 1 120 1191 2416 1191 120 1      
8 1 247 4293 15619 15619 4293 247 1    
9 1 502 14608 88234 156190 88234 14608 502 1  

The sum of the n-th line is the total of all permutations, so the factorial n!.

 


History

The Swiss mathematician Leonhardt Euler (1707 - 1783) described these numbers.


Deutsch   Español   Français   Nederlands   中文   Русский