Maeckes logo

<    1      2      3      4      6      7      8     11     12     13    >


Number e

Calculating the number e = 2,7182…  gives the limit

 


Explanation

The first derivative of the natural logarithm is

such that f ′(1) = 1. We use the definition of the derivative and write

Substitution of the logarithm gives

You can write this as the logarithm of a power

and since f ′(1) = 1 we get

The limit of a logarithm is the logarithm of a limit

such that

Therein, successive small values of x give

0,1           = 2,5937…
0,01         = 2,7048…
0,001       = 2,7169…
0,0001     = 2,7181…
0,00001   = 2,7182…

Note that for x = 0, the function is not defined.

 


Deutsch   Español   Français   Nederlands   中文   Русский