Maeckes logo

<    1      2    >


Power series for the hyperbolic cosine

The power series for the hyperbolic cosine is written as

 


Explanation

As the hyperbolic cosine can be differentiated continuously, you get







The point x = 0 gives cosh (0) = 1 and sinh (0) = 0, so










We substitute this in the Taylor series and find

 


Symmetry

The formula only contains even numbers, so there is the symmetry

 


Example 1

You can see that cosh (0) = 1, because

cosh (0) = 1 + 0 + 0 + ... = 1

 


Deutsch   Español   Français   Nederlands