Maeckes logo

<    1      2    >


Inverse hyperbolic cosine

The inverse hyperbolic cosine can be expresses with logarithms as

 


Explanation

We start with the hyperbolic cosine

Substitution of eθ = k gives

We continue only with the positive solution and substitute k = eθ so that

Now we take the logarithm on both sides

After substitution of θ = arccosh x we get

 


Example 1

You can see that cosh−1(1) = 0, because

cosh−1(1) = ln (1 + √0)  = ln (1) = 0

 


Deutsch   Español   Français   Nederlands   中文