Maeckes logo

<    1    >


Logaritmo como exponente

Un logaritmo es el exponente de una función exponencial.

 


Explicación

El logaritmo es la inversa de la función exponencial. Se define para b > 0, y satisface

b = eln b

Debido a que bx funciona de acuerdo con las reglas para logaritmos y exponentes, se debe aplicar

por cada número real x. Esta definición, que contiene potencias con logaritmos, es común para los números complejos.

 


Ejemplo 1

De la definición del logaritmo se deduce que se puede escribir cualquier número como una función exponencial, así también

1 = eln (1)

Y porque ln (1) = 0 obtienes

1 = eln (1) = e0 = 1

La potencia cero siempre da el valor 1.

 


Deutsch   English   Français   Nederlands   中文   Русский