Maeckes logo

<    1      2      3      4      5      6      7      8      9     10     11    >


Zero to the power of zero

The value (1 − 1)0 = 00 = 1 arises in the development of Pascal's triangle.

 


Explanation

Pascal's triangle shows the development of the coefficients in the binomium in the form

(a − b)n = an − n a− 1b + ½ n (n − 1) an −2b2  + ···

When you write the binomium (a − b)n as (1 − 1)n all a's and b's in the development disappear and only the binomial coefficients remain. The sum of the rows are powers of zero, as (1 − 1)n = 0n.

0 1 00 ≝ 1
1 1 −1 01 = 0
2 1 −2 1 02 = 0
3 1 −3 3 −1 03 = 0
4 1 −4 6 −4 1 04 = 0
5 1 −5 10 −10 −5 −1 05 = 0
6 1 −6 15 −20 15 −6 1 06 = 0
7 1 −7 21 −35 35 −21 7 −1 07 = 0
8 1 −8 28 −56 70 −56 28 −8 1 08 = 0

In row number three applies 03 = 1 − 3 + 3 − 1 = 0. For row number zero you get 00 ≝ 1.

 


History

The name of this triangle is a tribute to the French mathematician Blaise Pascal (1623 - 1662).


العربية   Deutsch   Español   Français   Nederlands   中文   Русский