Maeckes logo

<    1      2      3    >


Unendlich klein ist nicht Null

Mit unendlich klein darf man rechnen. Es hat aber keinen bestimmten Wert, und das muss in Berechnungen immer sorgfältig berücksichtigt werden.

 


Erläuterung

Nennen wir dieser unendlich kleiner Wert Δx, und denken daran, dass Δx→0. Es gilt darum

denn Δx ist vernachlässigbar. Da Δx aber immerhin noch einen Wert hat, dürfen wir es als Divisor verwenden. In der weiteren Untersuchung benutzen wir die Formel

und berechnen, allerdings mit Scheuklappen auf, zuerst

      

Versuchen wir es nochmals, auf eine feinere Art, und fangen ganz vorne mit n = 0 an. Für jede Zahl a ≠ 0 gilt a0 = 1. Deswegen ergibt unsere Formel jetzt

Alles scheint ziemlich klar zu sein. Das Ergebnis ist beides mal gleich. Machen wir weiter mit n = 1 und berechnen

Das ist aber erstaunlich, denn das ist ein ganz anderes Ergebnis als vorher, wo wir noch Scheuklappen auf hatten. Versuchen wir es jetzt mit n = 2 und sehen

Dann auch mal mit = 3 und wir erhalten

Anscheinend ist (1 + Δx) kleiner als (1 + Δx)2 und das ist wiederum kleiner als (1 + Δx)3. Das würde die Sache erklären. Das kann aber nicht stimmen. Denn wir sind uns sicher über

Außerdem haben wir schon gesehen

und dann muss zwangsläufig jede andere Exponent, sagen wir einfach n auch 1 ergeben, also gilt grundsätzlich

Was haben wir nun falsch gemacht? Ja, hier wird deutlich, dass unendlich klein doch etwas anderes als null ist. Der große Fehler passierte schon direkt am Anfang, denn die Aufgabe muss lauten

da es sich in Wirklichkeit um einen Grenzwert handelt. Bei der Behandlung davon gelten spezielle Regeln, und die wurden mit Füßen getreten. Ein Grenzwert darf man nicht auf einen beschränkten Teil einer Berechnung anwenden. So wurde falsch gerechnet, denn

   ist nicht gleich   

Das hatte fatale Folgen, wie wir festgestellt haben.

 


English   Español   Français   Nederlands   中文   Русский