Maeckes logo

<    1    >


Power series for the hyperbolic secant

The hyperbolic secant can be expressed by the power series

 


Explanation

The first derivative of the hyperbolic secant is

In the outcome are only the secant and tangent. If we determine further derivatives this will remain so because (tanh x)' = sech2x, so





The point x = 0 gives sech (0) = 1 and tanh (0) = 0, so









We substitute this in the Taylor series and find

so

 


General format

You can write the power series as a sum

where En is the n-th Euler number.

 


Deutsch   Español   Français   Nederlands